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Recap | The AI Toolbox
Approaches to automated problem solving

Search SamplingMIP Approximated Hybrid

ML, RL, AlgorithmicA*, BestFirstSimplex, Gurobi MCTS, DL+A*Random

 Assumes 
smoothness 
in the search 
space

 Assumes 
effective 
heuristics

 Assumes 
calibrated 
probability 
distributions 
& efficient 
sampling 
schema

 Assumes 
sufficiently good 
approximation. 
For ML: assumes 
representative
training data, 
sufficient 
capacity and 
sufficient 
training time.

 Assumes 
effective 
integration of 
different 
techniques
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Solver Learner



Solver
• Capable of solving 

different types of problems
• Optimal in some sense
• The answer is guaranteed to be the solution to the problem

Learner
• The problem is given indirectly through data
• Characteristics depend on the chosen technique
• Sometimes gives incorrect answers.

Algorithm
• Solves a specific problem

Algorithm AnswerQuestion

Solver Answer
Question

Problem Description

AI program 
written by 

humans

Computer

Algorithmic

Knowledge created by 
domain expert

Computer

General solver 
written by 

humans

Knowledge-based

Training data created 
by domain expert

Computer

General learning 
system written by 

humans

Learning-based

Learner

AnswerQuestion

Training data

Heuristic

Algorithms, solvers and learners
Recap | The Big Picture| Applied AI



Machine Learning | Big Picture



  

Linear regression

• Linear model
• Normal distributed noise
• Square loss
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Data Generating 
Function

Training dataset

Generative Model Synthetic dataset

Sample

SampleExamples:
• Sensors
• Phone app
• Robot (Autonomous car)
• Simulator
• Generative model

ML | The Big Picture

Predictive Model Prediction resultsPredict

Evaluate by 
comparing datasets

• Training set
• Evaluation set
• Testing set



ML | The Big Picture | Evaluation is difficult
Be aware of the limits of benchmarks:
• Benchmarks are a substitute

for reality, not reality
• Benchmarks get useless quickly
• Statistically, people/groups

will start to overfit to benchmarks 

results potentially meaningless
• Update/Create new regularly!



Data Generating 
Function

Training dataset

Generative Model Synthetic dataset

Sample

Sample

ML | The Big Picture (What we want)

Predictive Model Prediction resultsPredict

Evaluate by 
comparing datasets

Evaluate by comparing 
distributions Challenges:

• Efficient exploration
• Effective comparative measures
 Grounding



AI | Projects



• Goal Clear for all parties. Long-term and short-term.

• Data Data readiness. Information > Data.

• Competence Domain experts, Data management experts, AI specialists, AI experts.

• Tools Flexible laboration & prepared for deployment in organization.

• Process Agile and iterative processer – engineering and research practices.
 Take the right decision early with the right knowledge.
 Adapt to the AI/ML (etc.) maturity of the organization.

Applied AI Projects



• Goal

• Data

• Competence

• Tools

• Process

Applied AI Projects

A-band [Application]

B-band [Information]

C-band [Data]

Data Readiness [7]

• Quality and usefulness of data
• 3 bands (C -> B -> A)
• Data ready  ( AI ready )

How informative a data set is 
depends on the application.

Data Induction bias Prediction

assumptions, model, uncertainty, loss function, …

[7] N. D. Lawrence, Data Readiness Levels, 2017

Machine learning: 



• Goal

• Data

• Competence

• Tools

• Process

Applied AI Projects

• What data exists?
• On what format (schema)?
• Legal restrictions on access and usage?
• Limitations on where it may be stored and processed?

• Units? (seconds or hours?)
• Preprocessing and aggregations?
• Missing data?
• Incorrect data?
• Uncertain data?
• Regimes and trends over data properties?

• Can problem X be solved with the data set? A-band [Application]

B-band [Information]

C-band [Data]

[7] N. D. Lawrence, Data Readiness Levels, 2017



• Goal

• Data

• Competence

• Tools

• Process

Applied AI Projects

A-band [Application]

B-band [Information]

C-band [Data]Data volume

Large reduction in data volume
• Data not possible to correct
• Irrelevant information
• Redundant information

(Real example: 200M to 100k)



• Goal

• Data

• Competence

• Tools

• Process

Applied AI Projects

Interdiciplinary team

Domain experts: Core business, Data collection

Data curation and Analysis: Data management, 
Information extraction, Statistics-based conclusions

AI-engineers and AI-specialists: Correct software code

AI-experter: Broad(&deep) knowledge and know-how
Expert advisors and knowledge transfer

Competence supply!?



Competence: Supply and Aquisition

Applied AI Projects

Data curation and Analysis
• Data Engineer
• Data Scientist
• “Big Data” Engineer etc.

Knows data and 
data management.

AI engineers and AI specialists
• MSc: Computer Science (AI/ML)
• PhD: AI/ML/Vision/NLP
• “AI specialist” / ”AI expert”
• (Data Scientist)

Knows his/her hammer and 
applies it efficiently.

 Can quickly learn to use a new 
tool fairly well.

AI experts
 Broad and deep
 Large network of experts
 Many years of experience
 Experienced in a variety of projects

Understands the toolbox and can 
effectively choose the right tool for 
the right problem (and goal).

 Can effectively judge the 
prerequisites for different tools 
and assess the outcome.



Competence: Supply - transfer

Applied AI Projects

AI engineers and AI specialists

Data curation and Analysis

Domain experts

AI experts

AI know-howDomain understanding



• Goal

• Data

• Competence

• Tools

• Process

Applied AI Projects

Digitization -> Digitalisation -> Data-centered processer
Goal-oriented acquisition and quality assurance of data

Identify suitable projects and limitations:
 Domain experts and AI experts in dialog

1) Continuous education, prestudy and dialog:
 What can be done with the given data set and organizational constraints?
 How well does X perform today (measurable). Potential of improvement?
 Which are the lowest hanging fruits?

3) Verify, Validate, Pilot studies:
 Does it work in the lab?
 Does it work in a real environment?
 Does it work within the constraints of the organization?

2) Select and apply suitable methods and models – AI/ML
Analysis,
Consultation,
Data collection



Data management for AI/ML



• Data types (Not just numbers and categories!)

• Domain knowledge about data (Interpretation? Limitations?)

• Pre-processing / curation  (Raw data vs processed data. How is it processed?)

• Feature vector (A table/set where each column may have different data types.)

Raw data Curated data AI-resultatPre-processing Learn / Predict

• Training data
• Evaluation data
• New data

• Feature vectors

Data Management for AI/ML

A-band [Applikation]

B-band [Information]

C-band [Data]



Window

• Scalars ∎ Decimals, Integers, Categories

• Vectors ∎ ∎ ∎ Coordinate, start&stop, composite attributes

• Matrices/Tensors
∎ ⋯ ∎
⋮ ⋱ ⋮
∎ ⋯ ∎

Images, Volumes

• Sequences ∎ ⋯ ∎ Text, Image-series, Detections 

• Time series
∎ ⋯ ∎
𝑡𝑡1 ⋯ 𝑡𝑡𝑛𝑛 Actions, Measures, Windows

Data Management for AI/ML
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#1
Feature vectorPre-processing

Pre-processing #A
Raw data

Learn / Predict AI result #1

Curated data

Data Management for AI/ML



#1
#2

#3

Feature vector typePre-processing
Pre-processing #A

Pre-processing #B
Raw data Learn / Predict

AI result #1
AI result #2

AI result #3

Version control (Insight, Traceability, Reproducibility)
• Raw data (measures, meta data, explanations/interpretations)
• Pre-processing
• Curated dataset
• Feature vector sets
• AI results (learning methodology properties, model, performance/evaluation)

Curated data

Data Management for AI/ML



Version Control is Key (example) How?

• Source code (main.py) GIT
• Data GIT / GIT LFS
• Data sets GIT LFS
• Libraries and packages (numpy) Requirements.txt
• Runtime libraries (CUDA) Container
• Build environment (gcc10) Container
• Runtime environment (Ubuntu 24.04) Container

• Development environment (VSCode, Cursor, .bashrc) Container

Data Management for AI/ML | Version Control
Re
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*Container: Docker, Apptainer
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*Container: Docker, Apptainer

What really matters:
• Experiment tracking
• Reproducibility



• Time: A causal relation
• Interpolation (non-causal)

• Forecast (causal)

Data Management for AI/ML | Time-series forecasting

?

?



• Train to make predictions about the future (forecasts)

Data Management for AI/ML | Time-series forecasting

?

?

?

What does the start of the year tell us about the rest of the year?

Train

Train



• Continual learning (online learning)

Data Management for AI/ML | Time-series forecasting

?X

Today
”Stale” –  No longer informative about the future

Train, test, validate

Monitoring

Future



AI | Assessment of data, techniques and systems



Is the technology good enough?
• Always visualize the data | Don’t trust ”standard summarizing measures”

The Datasaurus Dozen [autodesk.com] 
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Typical metrics / statistics
X Mean: 54.26
Y Mean: 47.83
X SD: 16.76
Y SD: 26.93
Corr.: -0.06



Mattias Tiger – Café Kvalité – 2024-09-12

Exploratory Visual Analysis for Increasing Data Readiness in 
Artificial Intelligence Projects

[3] Tiger, Mattias, et al. Exploratory Visual Analysis for Increasing Data Readiness in Artificial Intelligence Projects.
arXiv preprint arXiv:2409.03805 (2024).

• Extends the data readiness concept and process to the full life cycle of AI projects 
(including evaluation/monitoring)

• Include temporal changes of data properties, concepts and organzations

• Provide guidelines how to use visualization to aid (and drive) the data readiness work



Is the technique good enough?
• Always visualize the data (evaluation data also!)

The Datasaurus Dozen [autodesk.com] 
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Typiska metriker/statistik
X Mean: 54.26
Y Mean: 47.83
X SD: 16.76
Y SD: 26.93
Corr.: -0.06



Is the technique good enough?
• Always visualize the data (evaluation data also!)
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Typiska metriker/statistik
X Mean: 54.26
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Example: Change a pixel to get an entirely different class.

Adverserial Attacks: Be aware of attack vectors



Is the system good enough?
• Always visualize the data (evaluation data also!)
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Adverserial Attacks: Be aware of attack vectors



Is the technique/system good enough?
• Visualisera alltid data (även utvärdering)
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Typiska metriker/statistik
X Mean: 54.26
Y Mean: 47.83
X SD: 16.76
Y SD: 26.93
Corr.: -0.06

Example: Change a pixel to get an entirely different class.

Adverserial Attacks: Var medveten om attackvektorer

What does the system have to achieve, and how to verify this?

 Assume that the techniques can fail from time to time
 Do not assume human-level abilities in any broad sense
 Human + AI-tool > Human or AI-tool



Mattias Tiger
AI och Integrerade Datorsystem (AIICS), 

Institutionen för Datavetenskap
www.ida.liu.se/~matti23/mattisite/research/

www.liu.se/ai-academy
www.liu.se/medarbetare/matti23

AIICS
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